欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(34231)
  • 图书()
  • 专利()
  • 新闻()

PHYSICAL SIMULATION OF INTERFACIAL CONDITIONS IN HOT FORMING OF STEELS

Y. H. Li , M. Krzyzanowski , J. H. Beynon and C. M. Sellars IMMPETUS( Institute for Microstructural and Mechanical Process Engineering: The University of Sheffield , Sheffield SI 3JD , UK)

金属学报(英文版)

In the last few years,substantial experimental simulation and mumerical modelling hare been carried out in IMMPETUS to characterise the interfacial heat transfer and friction conditions during hot forging and rolling of steels. Emphasis has been placed on the influence of the oxide scale which forms on the steel workpiece. In the present paper, the experimental methods used for investigating interfacial heat transfer and friction conditions are described. Theses include hot flat rolling of steel slabs and hot axi- symmetric forging of steel cylinders and rings.Temperature measurements and computations demon- strate that for similar conditions, similar conditions, the effective interfacial heat transfer coefficients (IHTC) derived for hot rolling are significantly higher than those for forging, mainly due to the contribution of scale cracking during rolling. On the basis of experimental observations and numerical analysis,physical models for interfacial heat transfer in forging and rolling have been established. In addition, hot" sandwich" rolling and hot tensile tests with finite element modelling have been carried out to evaluate the hot ductility of the oxide scale.The results indicate that the defomation, cracking and decohesion behaviour of the oxide scale depend on deformation temperature, strain and relative strengths of the scale layer and scale - steel interface.Finaly, friction results from hot ring compression tests and from hot rolling with forward/backward slip measurements are reported.

关键词: interfacial heat transfer , null , null , null , null , null

Corrosion of Y, Fe and Fe-15Y in H_2-H_2S Mixture under 10~(-3) Pa S_2 at 600~800℃

Yan NIU , Weitao WU and Chaoliu ZENG (State Key Lab. for Corrosion and Protection , Institute of Corrosion and Protection of Metals , Chinese Academy of Sciences , Shenyang 110015 , China)F. Gesmundo and F. Viani (Instituto di Chimica , Facolta di Ingegneria , Un

材料科学技术(英)

The corrosion of an Fe-based alloy containing 15 wt pct Y in H2-H2S mixtures under 10-3 Pa S2 was studied at 600~800℃ in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of Y has been shown to be beneflcial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus,Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the Y addition. but the alloy corrodes still much more rapidly than Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12~17 h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17Y2 and the limited solubility of Y in Fe

关键词:

Corrosion of Y, Fe and Fe-15Y in H-2-H2S mixture under 10(-3) Pa S-2 at 600 similar to 800 degrees C

材料科学技术(英)

The corrosion of an Fe-based alloy containing 15 wt pet Y in H-2-H2S mixtures under 10(-3) Pa S-2 was studied at 600 similar to 800 degrees C in an attempt to find materials with improved sulphidation resistance with respect to pure Fe. The presence of Y has been shown to be beneficial, but not sufficient to the level expected. In fact, the alloy is able to form at all tested temperatures an external FeS layer, beneath which a zone containing a mixture of the two sulphides is also present. Thus, Fe can still diffuse through this region to form the outer FeS layer with non-negligible rate. The corrosion rate of Fe is considerably reduced by the Y addition, but the alloy corrodes still much more rapidly than Y. The sulphidation kinetics is generally rather irregular for both the pure metals, while the corrosion rate of the alloy decreases with time and tends to become parabolic after an initial period of 12 similar to 17 h. The sulphidation behaviour of the alloys is discussed by taking into account the presence of an intermetallic compound Fe17Y2 and the limited solubility of Y in Fe.

关键词: high-temperature sulfidation;most-reactive component;ni-nb alloys;h2-h2s mixtures;behavior;600-degrees-c-800-degrees-c;oxidation

Improving glass-forming ability of Mg-Cu-Y via substitutional alloying: Effects of Ag versus Ni

Journal of Materials Research

Based on the best bulk metallic glass (BMG) forming alloy in the Mg-Cu-Y ternary system, we introduced Ag (or Ni) to partially substitute for Cu to improve the glass-forming ability (GFA). The objective of this paper is twofold. First, we illustrate in detail a recently developed search strategy, which was proposed but only briefly outlined in our previous publication [H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005)]. The protocol to navigate in three-dimensional composition space to land large BMGs is spelled out step-by-step using the pseudo-ternary Mg-(Cu,Ag)-Y as the model system. Second, our ability to locate the best BMG former in the composition tetrahedron allows us to systematically examine, and conclude on, the effects of a given alloying element. The large improvement in glass-forming ability in the Mg-(Cu,Ag)-Y system relative to the based ternary will be contrasted with the reduced glass-forming ability in the Mg-(Cu,Ni)-Y pseudo ternary system. It is demonstrated that the improvement of glass-forming ability requires judicious choice of substitutional alloying elements and concentrations, rather than simple additions of multiple elements assuming the "confusion principle."

关键词: bulk metallic-glass;shaped copper mold;amorphous-alloys;thermal-stability;ternary-system;casting method;p system;diameter;zr;mm

环戊烷基茚基氯化钇(1-C5H9C9H6)2-Y(μ-Cl)2Li(THF)2的合成及其晶体结构

齐民华 , 沈琪 , 陈小平 , 翁林红

应用化学 doi:10.3969/j.issn.1000-0518.2003.07.004

无水YCl3与1-环戊烷基茚基锂以1/2的摩尔比在THF中反应合成了二(1-环戊烷基茚基)氯化钇(C5H9C9H6)2Y(μ-Cl)2Li(THF)2,产物用元素分析、红外光谱及XRD进行表征. 结果表明,其晶体属于正交晶系,Pna2(1)空间群,a =1.648 2(7) nm,b =1.877 2(8) nm,c =1.131 7(5) nm,V =3.501(3) nm3,Z=4,Dc=1.285 Mg/m3,最终的偏离因子R=0.068 3,Rw=0.114 3.

关键词: 环戊烷基茚基 , 稀土配合物 , 合成 , 晶体结构

Effect of Li(3)N additive on the hydrogen storage properties of Li-Mg-N-H system

Journal of Materials Research

The effect of Li(3)N additive on the Li-Mg-N-H system was examined with respect to the reversible dehydrogenation performance. Screening Study with varying Li(3)N additions (5, 10, 20, and 30 mol%) demonstrates that all are effective for improving the hydrogen desorption capacity. Optimally, incorporation of 10 mol% Li(3)N improves the practical capacity from 3.9 wt% to approximately 4.7 wt% hydrogen at 200 degrees C, which drives the dehydrogenation reaction toward completion. Moreover, the capacity enhancement persists well over 10 de-/rehydrogenation cycles. Systematic x-ray diffraction examinations indicate that Li(3)N additive transforms into LiNH(2) and LiH phases and remains during hydrogen cycling. Combined structure/property investigations suggest that the LiNH(2) "seeding" should be responsible for the capacity enhancement, which reduces the kinetic barrier associated with the nucleation of intermediate LiNH(2). In addition, the concurrent incorporation of LiH is effective for mitigating the ammonia release.

关键词: complex hydrides;improvement;mixtures;imides;amide;h-2

Mg-12Li-3Gd-3Y-0.6Zr镁合金的均匀化研究

冯剑 , 黄金亮 , 贾玉鑫

兵器材料科学与工程

为改善铸态Mg-12Li-3Gd-3Y-0.6Zr合金的力学特性,对铸锭进行均匀退火处理。采用金相显微镜、SEM、XRD、显微硬度测试和拉伸力学特性测试,观察和研究了试验合金的微观组织和力学特性。结果表明:最佳的均匀化退火工艺为500℃×8 h,均匀化退火后合金的抗拉强度由铸态的114 MPa提高到133 MPa。第二相形态及分布的改变是Mg-12Li-3Gd-3Y-0.6Zr合金力学特性改变的主要原因。

关键词: 镁锂合金 , 均匀化 , 微观组织 , 力学特性

Mg-8Li-3Gd-3Y-0.6Al镁合金的均匀化研究

冯剑 , 黄金亮 , 贾玉鑫

稀土

为了提高Mg-8Li-3Gd-3Y-0.6Al合金铸锭的力学性能,对合金进行了均匀化退火处理.通过金相显微镜、扫描电镜、显微硬度测试、X射线衍射、拉伸力学性能测试等手段,研究了均匀化条件对Mg-8Li-3Gd-3Y-0.6Al合金的显微组织和力学性能的影响.结果表明,铸态合金经773K 8h的均匀化处理后,铸态时的网状相完全溶解到基体中,第二相弥散分布在基体中,同时退火态合金的抗拉强度达到了154 MPa,比铸态合金提高了23%.合金最佳的均匀化退火工艺是773K 8h,此时该合金具有较好的综合力学性能.

关键词: Mg-8Li-3Gd-3Y-0.6Al合金 , 显微组织 , 均匀化 , 力学性能

Enhanced Hydrogen Storage Properties of Li-Mg-N-H System Prepared by Reacting Mg(NH(2))(2) with Li(3)N

Journal of Physical Chemistry C

The Li-Mg-N-H system was prepared by reacting magnesium amide [Mg(NH(2))(2)] with lithium nitride (Li(3)N) and investigated with regard to the hydrogen storage properties. Our study shows that the present method is superior to the conventional route in enhancing the reversible dehydrogenation properties. Through optimizing the Li(3)N:Mg(NH(2))(2) ratio in the starting materials, the reversible capacity of U-Mg-N-H system increases to 4.9 wt %, 18% higher than that typically obtained from the Mg(NH(2))(2) + 2LiH mixture at 200 degrees C. Furthermore, increasing the Li(3)N:Mg(NH(2))(2) ratio is effective for mitigating the ammonia release from thus-prepared samples. Combined property/structure investigations indicate that the obtained enhancements should be ascribed to the effects of LiNH(2) and LiH that were in situ generated from the excess Li(3)N. LiNH(2) may promote the dehydrogenation reaction via seeding the reaction intermediate. The concurrently generated LiH acts as an effective ammonia trapping agent. These findings highlight the potential of "intermediate seeding" as a strategy to enhance the reversible hydrogen storage properties of metal-N-H systems.

关键词: complex hydrides;ultrafast reaction;amide;improvement;desorption;linh2;destabilization;mechanism;mixtures;imides

Li-Mg-N-H储氢材料储氢性能测试方法研究

裴增文 , 刘晓鹏 , 黄倬 , 李志念 , 王树茂 , 蒋利军

稀有金属 doi:10.3969/j.issn.0258-7076.2010.04.013

采用等容法研究了机械球磨工艺制备的Li-Mg-N-H材料储氧性能,结果发现,在室温下采用氦气对样品室体积进行标定时,由于Li-Mg-N-H材料对氦气有一定量的物理吸附,造成准确Li-Mg-N-H材料样品体积标定误差,进而造成Li-Mg-N-H储氢材料在503 K下放氢容量随压力的降低而增加异常变化.为准确标定样品体积,通过对Li-Mg-N-H材料室温氮气吸附容量测定,并采用迭代计算方法获得准确的储氢材料样品体积,进而测定Li-Mg-N-H储氢材料503 K下放氢PCT曲线,其表现为放氢容量随压力降低而减小的正常变化规律.Li-Mg-N-H储氢材料503 K,9.6 MPa氢压下的最大储氢容量为4.81%(质量分数),放氢过程表现为单一放氢平台特性.

关键词: 轻质储氢材料 , Li-Mg-N-H , 储氢性能 , 等容测试方法

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共3424页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词